منابع مشابه
Strict p-negative type of a metric space
Doust and Weston (J Funct Anal 254:2336–2364, 2008) have introduced a new method called enhanced negative type for calculating a non-trivial lower bound ℘T on the supremal strict p-negative type of any given finite metric tree (T, d). In the context of finite metric trees any such lower bound ℘T > 1 is deemed to be nontrivial. In this paper we refine the technique of enhanced negative type and ...
متن کاملSTRICT p-NEGATIVE TYPE OF A SEMI-METRIC SPACE
Doust and Weston [8] introduced a new method called “enhanced negative type” for calculating a non trivial lower bound ℘T on the supremal strict p-negative type of any given finite metric tree (T, d). (In the context of finite metric trees any such lower bound ℘T > 1 is deemed to be non trivial.) In this paper we refine the technique of enhanced negative type and show how it may be applied more...
متن کاملTHE SUPREMAL p-NEGATIVE TYPE OF A FINITE SEMI-METRIC SPACE CANNOT BE STRICT
Doust and Weston [5] introduced a new method called “enhanced negative type” for calculating a non trivial lower bound ℘T on the supremal strict p-negative type of any given finite metric tree (T, d). (In the context of finite metric trees any such lower bound ℘T > 1 is deemed to be non trivial.) In this paper we refine the technique of enhanced negative type and show how it may be applied more...
متن کاملOPTIMAL LOWER BOUND ON THE SUPREMAL STRICT p-NEGATIVE TYPE OF A FINITE METRIC SPACE
Determining meaningful lower bounds on the supremal strict p-negative type of classes of finite metric spaces is a difficult nonlinear problem. In this paper we use an elementary approach to obtain the following result: given a finite metric space (X, d) there is a constant ζ > 0, dependent only on n = |X | and the scaled diameter D= (diam X)/min{d(x, y) | x 6= y} of X (which we may assume is >...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Positivity
سال: 2009
ISSN: 1385-1292,1572-9281
DOI: 10.1007/s11117-009-0035-2